Logarithmic Regret Algorithms for Strongly Convex Repeated Games
نویسندگان
چکیده
Many problems arising in machine learning can be cast as a convex optimization problem, in which a sum of a loss term and a regularization term is minimized. For example, in Support Vector Machines the loss term is the average hinge-loss of a vector over a training set of examples and the regularization term is the squared Euclidean norm of this vector. In this paper we study an algorithmic framework for strongly convex repeated games and apply it for solving regularized loss minimization problems. In a convex repeated game, a predictor chooses a sequence of vectors from a convex set. After each vector is chosen, the opponent responds with a convex loss function and the predictor pays for applying the loss function to the vector she chose. The regret of the predictor is the difference between her cumulative loss and the minimal cumulative loss achievable by a fixed vector, even one that is chosen in hindsight. In strongly convex repeated games, the opponent is forced to choose loss functions that are strongly convex. We describe a family of prediction algorithms for strongly convex repeated games that attain logarithmic regret.
منابع مشابه
Mind the Duality Gap: Logarithmic regret algorithms for online optimization
We describe a primal-dual framework for the design and analysis of online strongly convex optimization algorithms. Our framework yields the tightest known logarithmic regret bounds for Follow-The-Leader and for the gradient descent algorithm proposed in Hazan et al. [2006]. We then show that one can interpolate between these two extreme cases. In particular, we derive a new algorithm that share...
متن کاملOn the Generalization Ability of Online Strongly Convex Programming Algorithms
This paper examines the generalization properties of online convex programming algorithms when the loss function is Lipschitz and strongly convex. Our main result is a sharp bound, that holds with high probability, on the excess risk of the output of an online algorithm in terms of the average regret. This allows one to use recent algorithms with logarithmic cumulative regret guarantees to achi...
متن کاملOptimal Stragies and Minimax Lower Bounds for Online Convex Games
A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f , and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. ...
متن کاملOptimal Strategies and Minimax Lower Bounds for Online Convex Games
A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f , and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. ...
متن کاملDeep Online Convex Optimization with Gated Games
Methods from convex optimization are widely used as building blocks for deep learning algorithms. However, the reasons for their empirical success are unclear, since modern convolutional networks (convnets), incorporating rectifier units and max-pooling, are neither smooth nor convex. Standard guarantees therefore do not apply. This paper provides the first convergence rates for gradient descen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007